2. Цифровая геологическая модель

Цифровые геологические модели в зависимости от количества и качества исходных данных и метода моделирования могут быть детерминированными либо стохастическими. Для построения детерминированных моделей необходимо большое количество данных и большая точность определения коллекторских свойств пород. В отсутствие таких данных и при наличии сведений о закономерностях распределения ФЕС в объеме резервуара целесообразно использовать стохастические модели залежи.

Модели подразделяются на двухмерные, псевдотрехмерные и трехмерные. Двухмерная модель представляет собой обычную карту в изолиниях либо цифровое поле признака. Псевдотрехмерная модель представляет собой набор двухмерных моделей, каждая из которых соответствует заранее выделенному слою в разрезе объекта разработки. Трехмерная модель представляет собой объемное поле в координатах X, Y, Z, каждая ячейка которого характеризуется значениями фильтрационно - емкостных свойств пород.

2.1. Исходные данные для построения цифровой геологической модели

2.1.1. Методика и результаты обработки и интерпретации сейсмических данных

В случае, если обработка и интерпретация сейсмических данных выполнялись в рамках отдельных работ, эти вопросы излагаются в сокращенной форме со ссылками на соответствующие отчеты геофизических организаций. Основное внимание в этом случае уделяется достоверности структурных построений и прогноза коллекторских свойств в межскважинном пространстве.

2.1.1.1. Методика и результаты обработки сейсмических данных

В краткой форме излагаются сведения о методике полевых работ, объемах обработки, технических средствах, технологии обработки, результатах обработки со ссылками на соответствующие отчеты. Указывается система координат, в которой представлены сейсмические данные, перечень технических и программных средств, посредством которых выполнялась обработка. Отмечаются особенности условий наблюдений и их учет при обработке данных («сшивка» сейсмических кубов, влияние многолетнемерзлых пород).

Дается краткая оценка результатов работ с позиций возможностей решения стоящих геологических задач (выделение и картирование нарушений, прослеживание горизонтов, учет газовых шапок, анализ амплитуд). Приводится схема кратности сейсмических наблюдений.

2.1.1.2. Методика и результаты интерпретации сейсмических данных

Приводятся сведения о качестве и количестве исходного геолого - геофизического материала, на основе которого выполнялась интерпретация (количество скважин, в том числе с АК и ГТК, ВСП, ССК, погонных километров профилей сейсморазведки 2D, квадратных километров 3D).

В случае наличия материалов разных лет, различного качества и методов обработки сообщаются сведения о технологии совместного анализа данных. Излагаются результаты интерпретации данных скважинной сейсморазведки (ВСП, МПГС).

Дается краткая характеристика используемым при интерпретации техническим и программным средствам. Излагается методика получения дополнительных сейсмических параметров (ПАК, скоростей, фаз, когерентности). На основе данных ВСП, проведения математического сейсмомоделирования обосновывается стратиграфическое соответствие между сейсмическими и геологическими горизонтами. При этом затрагиваются вопросы построения скоростной и плотностной моделей разреза.

Освещаются вопросы прослеживания сейсмических горизонтов, выделения нарушений, сейсмических аномалий с учетом неоднородностей ВЧР, наличия газовых шапок. Излагается методика построения карт сейсмических атрибутов (углов наклона, амплитуд, изохрон, временных толщин).

Обосновываются способы построения карт скоростей и структурных карт, обеспечивающие оптимальное использование данных бурения о глубинах границ, сведений о стратиграфической привязке и скоростях распространения сейсмических волн.

Специальное место уделяется вопросу картирования и учета при построении карт сейсмических параметров и структурных построениях тектонических нарушений. При анализе рисунка волнового поля выполняется сейсмостратиграфический, структурно - формационный и сейсмофациальный анализ.

При интерпретации данных сейсморазведки с целью прогноза геологического разреза приводятся следующие сведения:

  • - информативные сейсмические и сейсмогеологические параметры, на основе которых выполнялся прогноз;
  • - вертикальная и латеральная разрешающая способность прогноза;
  • - обоснование выбора временных окон для оценки параметров горизонтов;
  • - методика количественной оценки ФЕС.

Завершается раздел оценкой достоверности структурных построений и прогноза коллекторских свойств в межскважинном пространстве. Приводятся кросс - плоты связей сейсмических параметров и данных бурения. Дается количественная оценка тесноты связей и погрешностей зависимостей.

При изложении вопросов обработки и интерпретации сейсмических материалов необходимо учитывать действующие инструкции по сейсморазведке.

Если построение модели выполнялось ранее, дается краткое сравнение полученных результатов с результатами работ прошлых лет: изменение объемов сейсмических работ, изменение привязки, корректировка зависимостей, повышение точности построений и прогноза ФЕС.

Рекомендуется, чтобы плотность разведочных скважин с полным комплексом ГИС и проведением АК и ГГК-п для достоверного прогноза структурного плана пластов и их фильтрационно - емкостных свойств по данным сейсморазведки была не ниже чем 1 скважина на 8 - 10 кв.км 3D. Рекомендуется выполнение ВСП во всех поисковых и в 1 - 2 разведочных скважинах, на крупных месторождениях сложного строения - в 3 - 4 скважинах.

2.1.2. Методика и результаты интерпретации данных керна и ГИС

В случае, если интерпретация данных ГИС выполнялась в рамках отдельных работ, эти вопросы излагаются в сокращенной форме со ссылками на соответствующие отчеты геофизических организаций и протоколы их рассмотрения.

2.1.2.1. Комплекс ГИС, качество исследований

Описывается комплекс ГИС. Приводится объем проведенных исследований продуктивных отложений, представленный в табличной форме по всем разведочным скважинам и в обобщенном статистическом виде по отдельным методам по эксплуатационным скважинам. Анализируются причины недовыполнения комплекса.

Описывается технология проведения геофизических исследований, технические и аппаратурные средства. Дается оценка качества геофизических исследований и оценивается эффективность комплекса ГИС для конкретных геологических условий.

Объем выполненных ГИС должен быть не меньшим, чем предусмотрено действующими обязательными комплексами геофизических исследований нефтегазовых скважин, а также правилами геофизических исследований и работ в нефтяных и газовых скважинах.

2.1.2.2. Петрофизическое обоснование методики интерпретации

Приводится петрофизическое обоснование комплексной интерпретации материалов ГИС. Дается литолого - петрографическая характеристика коллекторов продуктивных горизонтов. Кратко упоминаются методики определения петрофизических параметров. Дается петрофизическая характеристика коллекторов в виде статистических распределений параметров и в табличной форме в виде диапазонов изменения и средних значений параметров - коэффициентов открытой пористости, остаточной водонасыщенности и нефтенасыщенности, абсолютной проницаемости, глинистости, плотности и пр.

Приводятся зависимости между основными петрофизическими параметрами в виде рисунков и в табличной форме с указанием уравнений регрессии и коэффициентов корреляции или корреляционных отношений. Описываются модели коллекторов основных продуктивных горизонтов. Приводится обоснование нижних пределов параметров коллекторов. По керну, извлеченному из скважин, пробуренных на РНО или каком-либо другом растворе с нефильтрующейся основой, приводится величина остаточной водонасыщенности, наиболее достоверно характеризующая коллекторы с разными ФЕС из зоны предельного нефтенасыщения.

2.1.2.3. Оценка геофизических параметров и коллекторских свойств

Излагается методика и алгоритмы обработки и интерпретации геофизических исследований скважин. Описывается предварительная обработка материалов ГИС: выделение опорных пластов, статистическая эталонировка показаний, расчет относительных амплитуд и т.п.

Приводятся критерии литологического расположения разреза, выделения коллекторов, оценки эффективных толщин. Описываются методики определения граничных и критических значений геофизических и петрофизических параметров, оценки фильтрационно - емкостных свойств коллекторов - пористости, нефтенасыщенности, газонасыщенности, проницаемости, глинистости, остаточной нефте- и водонасыщенности.

2.1.2.4. Определение флюидных контактов

Приводится обоснование положения контактов «нефть - вода» (ВНК), «газ - нефть» (ГНК) и «газ - вода» (ГВК) для каждой залежи. Дается определение понятия ВНК и ГНК, переходных зон, уровня зеркала чистой воды. Обосновывается выбор скважин для установления положения контактов. В табличной форме приводятся интервалы опробования скважин, условия и результаты опробования, границы коллекторов в интервале испытания по данным ГИС.

Приводятся профили по разрезам скважин, вскрывших контакты. Устанавливаются границы изменения положения контактов. Дается объяснение технических, инструментальных, литологических или геологических причин колебаний положения контактов в скважинах. По результатам интерпретации ГИС, испытаний и детальной корреляции составляются схемы обоснования флюидных контактов для залежей продуктивных пластов месторождения. Формируются модели переходных зон для контактов «нефть - вода,» «газ - нефть», «газ - вода» по каждой залежи. Предпочтительно использовать как основу для построения моделей переходных зон данные керна (капиллярометрия), ГИС и установленные положения контактов. При необходимости следует учитывать структуру переходной зоны посредством расчетов фазового равновесия «нефть - вода», «газ - нефть», «газ - вода» в гравитационном поле с учетом капиллярных сил и физико - химических свойств флюидов. Модели переходных зон представляются в виде палеток изменения нефте- и газонасыщенности коллекторов с разными ФЕС по вертикали.

2.1.2.5. Анализ достоверности оценки ФЕС

Выполняется анализ полученных результатов оценки ФЕС и делается вывод о достоверности определения свойств коллекторов по каждой залежи путем сравнения с данными керна, гидродинамических исследований, разными вариантами обработки, предыдущими подсчетами запасов и пр. Приводятся результаты статистической обработки основных параметров - эффективной толщины, коэффициентов пористости, нефтегазонасыщенности, проницаемости - в виде статистических распределений и в табличной форме в виде диапазонов изменения и средних значений параметров.

2.1.2.6. Подготовка данных для интерпретации сейсмических наблюдений

Приводится описание использования ГИС для сейсмических исследований, что включает построение вертикальной акустической модели по показаниям акустического и гамма - гамма - плотностного методов или путем построения расчетной акустической модели по показаниям других методов ГИС в виде изменения значений пластовой скорости и акустической жесткости в выделенных прослоях различной литологии по разрезу скважины.

При комплексной интерпретации данных ГИС, керна и испытаний скважин следует руководствоваться действующими методическими рекомендациями по определению подсчетных параметров залежей нефти и газа по материалам геофизических исследований скважин с привлечением результатов анализов керна, опробований и испытаний продуктивных пластов.

Если построение модели выполнялось ранее, дается краткое сравнение полученных результатов с результатами работ прошлых лет: изменение объемов ГИС и исследований керна, изменение граничных значений «коллектор - неколлектор», «вода - нефть», зависимостей «керн - ГИС», методик определения ФЕС.

2.1.3. Методика и результаты детальной корреляции продуктивных пластов

2.1.3.1. Детальная корреляция

Излагаются результаты работ по методике выбора стратиграфических границ продуктивных пластов и выделения этих границ в скважинах. Обоснованием их выделения могут быть типовые скважины, результаты сопоставления стратиграфических, электрических, радиоактивных реперов, изучения шлама, микрофауны, механического каротажа и др. В случае автоматической или полуавтоматической корреляции описывается алгоритм процесса, реализованный в виде программного комплекса.

Рекомендуется выявлять последовательность напластования путем первоочередного прослеживания глинистых прослоев, корреляцию вести снизу вверх в соответствии с последовательностью отложения слоев.

При сложном геологическом строении рекомендуется проводить корреляцию по независимой системе пересекающихся профилей с последующей увязкой границ. Для корреляции использовать кривые полного комплекса ГИС.

Результаты корреляции представляются в виде альбома профилей корреляции в масштабе кривых ГИС 1:500 или 1:1000 в зависимости от толщины изучаемого интервала разреза, схемы расположения профилей, типовых скважин. При корреляции разведочных скважин рекомендуется представлять временные сейсмические разрезы с вынесенными на них кривыми ГИС.

2.1.3.2. Палеотектонический анализ

В данном разделе приводятся результаты палеотектонического анализа, на основе которого делаются выводы о палеогеоморфологической обстановке формирования целевых объектов, возможном влиянии конседиментационных тектонических процессов на формирование седиментационных циклов, положении границ циклов, формирующих их фаций. Дается оценка направлений транспортировки обломочного материала, причин его аккумуляции. Выделяются границы стратиграфических несогласий, оценивается наличие процессов тектонической инверсии.

Анализ проводится по палеореконструированным разрезам, картам толщин по данным ГИС и сейсморазведки статистическими методами. При этом используются результаты региональных работ и анализа структурных построений. Ранг выбираемых для палеотектонического анализа интервалов примерно соответствует интервалам сейсмостратиграфических комплексов. Выводы обосновываются графическими материалами.

Рекомендуется представлять результаты в виде карт условных эффективных толщин или других параметров, характеризующих однородность разреза, энергию среды осадконакоплення. Возможно построение карт палеорусловых отложений, зон слияния пластов, распространения косослоистых отложений, в карбонатных отложениях - рифовой фации. Интерполяция изолиний карт должна соответствовать геологическим закономерностям выделенных фациальных зон.

2.1.4. Обоснование выбора объектов и моделей залежей

Кратко излагаются результаты обобщения структурного, палеотектонического, сейсмофациального анализов, геологической интерпретации данных ГИС, результатов региональных исследований, данных дистанционных методов, грави- и магниторазведки с целью обоснования непротиворечивости результатов анализа данных различных методов в рамках предложенных геологических моделей, выявленных закономерностей, определяющих строение разреза и историю формирования залежей. При необходимости анализ данных разведочной геофизики, геохимии, аэрофото- и космоснимков рассматривается в отдельном разделе.

На основе анализа латеральной и вертикальной зональности продуктивных коллекторов и разделяющих их покрышек, продуктивности отложений, их близости в разрезе, идентичности ФЕС и свойств флюидов, отметок ВНК и их изменения по площади, а также с учетом технического задания выбираются объекты геологического моделирования и подсчетные объекты.

Если построение модели выполнялось ранее, дается краткое сравнение полученных результатов с результатами работ прошлых лет: изменение стратиграфических разбивок в скважинах, методик корреляции пластов, моделей залежей.

2.2. Построение цифровых геологических моделей

2.2.1. Обоснование объемных сеток параметров модели

Излагается обоснование вертикальных и горизонтальных размеров ячеек с учетом дифференциации разреза по ФЕС и наличия непроницаемых пропластков. Размер ячеек горизонтальной проекции сетки определяется средним расстоянием между скважинами и общими размерами области построения по осям X и Y.

Размеры ячеек Dx и Dy при отсутствии установленной латеральной анизотропии коллекторских свойств рекомендуется принимать одинаковыми. Размер ячеек выбирается исходя из степени изменчивости структурного плана и ФЕС коллекторов по латерали, плотности, геолого - геофизических наблюдений. Рекомендуется, чтобы между забоями скважин независимо от расстояния между ними было не менее 10 ячеек. На этапе эксплуатационного разбуривания размеры ячеек и их число между скважинами уменьшаются. Ориентацию ячеек целесообразно согласовывать с преимущественной ориентацией тектонических и литологических границ. При необходимости применяется процедура локального измельчения сетки.

Количество слоев (ячеек) по вертикали выбирается исходя из детальности корреляции разрезов скважин. При дальнейшей детализации геологической модели вертикальный размер ячеек может быть уменьшен в соответствии с детальностью расчленения коллектора.

Размер ячеек по вертикали должен быть согласован с вертикальной толщиной геологических слоев и подсчетных объектов. В целом каждый элементарный геологический слой или подсчетный объект должен быть представлен минимум одной ячейкой по вертикали.

В разделе приводится обоснование области построения с указанием координат вершин этой области, размеров ячеек по осям X и Y, количество ячеек по X и Y, ориентации ячеек.

Приводятся данные о количестве слоев в цифровой геологической модели с учетом коллекторов и непроницаемых перемычек. Если поверхности газонефтяного, водонефтяного или газожидкостного контактов учитываются при разбивке модели на слои, то приводятся соответствующие данные по каждому пласту (зональному интервалу).

Допускается обоснованное изменение области построения для нескольких объектов (пластов) одного месторождения (залежи), если они являются гидродинамически несвязанными объектами и характеризуются разным фондом скважин.

2.2.2. Построение структурной модели

Указывается основной тип строения месторождения (залежи) - последовательное согласное залегание слоев, клиноформное строение, наличие разломов, вертикальных и горизонтальных смещений.

В зависимости от детальности цифровой геологической модели построение основного структурного каркаса проводится по кровлям и подошвам пластов, седиментационных циклов (зональных интервалов), а также по кровлям и подошвам коллекторов каждого пласта, цикла, подсчетного объекта или зонального интервала. Указываются источники исходных данных для построения основного структурного каркаса залежи - ГИС, 2D-сейсморазведка, 3D-сейсморазведка и т.д. При использовании структурных сейсмических поверхностей (сеток) указывается соответствие отражающих горизонтов структурным поверхностям основного каркаса модели месторождения (залежи).

Если для создания геологической модели используются несколько структурных сейсмических поверхностей, то для каждой определяется полное соответствие структурным поверхностям основного каркаса модели - конформно, согласно, несогласно снизу, несогласно сверху и т.д.

Рекомендуется приводить распределение глубинных невязок между сейсмическими картами и абсолютными отметками в скважинах для дальнейшего анализа достоверности построения структурного каркаса. Оценка невязок приводится в графическом или в табличном виде.

В тексте раздела приводится название стандартного алгоритма построения структурных поверхностей и способы увязки структурных поверхностей между собой. При использовании оригинальных алгоритмов дается более подробное их описание. Акцентируется внимание на учете скачков структурных поверхностей вдоль тектонических нарушений.

Выходными данными при построении основного структурного каркаса являются двухмерные послойные сетки структурных поверхностей в общепринятых форматах и набор контрольных точек со значениями абсолютных отметок на этих поверхностях.

На основной структурный каркас накладываются поверхности контактов флюидов (ГНК, ВНК, ГВК). Поверхности контактов задаются абсолютной отметкой, а при горизонтально - неровном, наклонном или наклонно - неровном контакте эти поверхности также задаются в виде двухмерных сеток и прилагаются карты поверхностей этих контактов.

При исправлении абсолютных отметок пластопересечений в связи с корректировкой структуры по ВНК указываются величины подвижек в табличном или графическом виде и приводится обоснование изменения абсолютных отметок в скважинах. Рекомендуется использовать при исправлении абсолютных отметок пластопересечений в качестве опорных разведочные скважины и субвертикальные эксплуатационные скважины с удлинением примерно до 15 м (центральные скважины кустов).

Выходными данными после наложения поверхностей контактов являются двухмерные послойные сетки (цифровые карты) общих газо-, нефте- и водонасыщенных толщин по каждому пласту, седиментационному циклу, подсчетному объекту или зональному интервалу модели.

Приводится методика расчета внешних и внутренних контуров по газовой и нефтяной зоне каждого моделируемого интервала. Результатом должны быть полигоны этих контуров в общепринятых форматах.

Для сложных расчлененных продуктивных пластов могут быть построены пространственные блок - диаграммы, позволяющие детально представить особенности геологического строения залежей.

2.2.3. Построение литологической модели и распределения ФЕС

Сообщаются сведения о методике построения литологической модели и распределении ФЕС. В сеточной модели предполагается занесение в каждую ячейку объемной сетки кода индекса литологии или признака «коллектор - неколлектор», а также кода или численных значений эффективной мощности, коэффициента песчанистости, пористости, проницаемости, при необходимости - и других петрофизических или геофизических параметров. В качестве этих параметров могут быть использованы как исходные данные, так и данные, получаемые путем расчета (глинистость, фазовая проницаемость, относительная амплитуда ПС и др.).

Приводятся сведения о методе определения значений в межскважинном пространстве. При применении геостатистических методов (крайгинг, кокрайгинг), искусственных нейронных сетей и других сложных интерполяционных процедур при расчете значений эффективной толщины, пористости или других ФЕС с использованием результатов интерпретации динамической сейсморазведки приводится необходимое обоснование использования того или иного сейсмического атрибута с приведением статистических оценок в графическом или табличном виде.

Параметры сглаживания для сеток, построенных по сейсмическим атрибутам, приводятся в методике расчета этих сеток. Для оценки достоверности кубов литологии и ФЕС используются построенные по этим кубам карты эффективных толщин, пористости и проницаемости. На границах зон замещения и выклинивания коллекторов эффективные толщины должны быть равны нулю, а значения пористости и проницаемости должны согласовываться с граничными значениями «коллектор - неколлектор» для этих параметров в соответствии с закономерностями осадконакопления - постепенное замещение, размыв и др.

Если пласту или коллектору в пласте соответствуют несколько слоев ячеек, то дополнительно приводятся способы вычисления средних значений параметров между поверхностями, составляющими структурный каркас месторождения или залежи.

При вычислении значений открытой пористости и абсолютной проницаемости по X, Y, Z в ячейках объемной сетки указывается способ расчета. При этом значения пористости и проницаемости в каждой ячейке должны быть согласованы по петрофизическим зависимостям.

2.2.4. Построение модели насыщения пластов флюидами

В данном разделе описывается алгоритм и технология насыщения пластов флюидами с учетом основных флюидных контактов - уровня зеркала воды, водонефтяного, газонефтяного контактов. Каждой ячейке модели присваивается значение водонасыщенности, в газовой «шапке» - также нефтенасыщенности.

При расчете значений водонасыщенности в межскважинном пространстве в ячейках сетки рекомендуется использовать петрофизические зависимости изменения коэффициента водонасыщенности от расстояния до ВНК (нефтенасыщенности в газовой «шапке» от расстояния до ГНК), а также от пористости или проницаемости коллекторов. Рекомендуется строить зависимости по данным ГИС, капиллярометрии, кривых ОФП.

Положение ВНК увязывается с граничными значениями водонасыщенности, которые могут различаться в зависимости от ФЕС (проницаемости), а также с величиной остаточной нефтенасыщенности. Значения в ячейках с признаком наличия скважины должны соответствовать коэффициентам водонасыщенности, определенным по данным ГИС.

2.2.5. Особенности моделирования карбонатных залежей

Моделирование залежей, приуроченных к карбонатным коллекторам, имеет свои особенности. Если разрез представлен чередованием хорошо коррелируемых поровых и плотных разностей, то вполне реализуемы обычные методические приемы, применяемые для пластовых залежей в терригенных коллекторах.

Однако нередко карбонатные массивы представлены нерасчлененной толщей, в которой емкостно - фильтрационные свойства контролируются не условиями седиментации отложений, а степенью развития вторичных, катагенетических процессов: растрескиванием, выщелачиванием, перекристаллизацией и т.д. В этом случае более приемлемой технологией моделирования является формирование трехмерных псевдослоистых моделей.

Основой такой методики является типизация коллекторов, геометризация резервуара и параметрическое заполнение модели с использованием вероятностного подхода. Типизация коллекторов должна учитывать качественные различия в структуре пустотного пространства породы, в частности, количественное соотношение трещин, каверн и поровой матрицы.

Геометризация резервуара использует задание оцифрованных поверхностей (кровли, водонефтяного контакта, тектонических нарушений и т.д.) и формирует пакет параллельных слоев, каждый из которых представляет собой зональную карту распространения выделенных типов коллекторов на соответствующей глубине. Параметрическое заполнение модели осуществляется заданием статистических распределений параметров дифференцированно для каждого типа коллектора и моделирование их в узлах послойных матриц.

Если построение модели выполнялось ранее, дается краткое сравнение полученных результатов с результатами работ прошлых лет: изменение размеров и ориентации ячеек, алгоритмов интерполяции, корректировки исходных данных, зависимостей между сейсмическими и петрофизическими параметрами.

2.2.6. Особенности построения моделей на различных стадиях изученности

В соответствии со схемой стадийности геологоразведочных работ на нефть и газ выделяются следующие этапы:

  • - региональный;
  • - поисково - оценочный;
  • - разведочно - эксплуатационный.

В каждом из этапов выделяется по две стадии. Однако в данном случае учитывается степень изученности на стадии «Поиск и оценка месторождений (залежей)» поисково - оценочного этапа, а также на стадиях «Разведка и опытно - промышленная эксплуатация» и «Эксплуатационная разведка» разведочно - эксплуатационного этапа.

На каждой из этих стадий виды моделей и особенности их построения определяются требованиями, направленными на усиление степени дифференциации объектов внутри залежи, запасов углеводородов по площади и по разрезу, то есть на постоянное во времени повышение достоверности модели.

Выделяют два основных вида моделей залежей углеводородов: статические и динамические. Статические модели характеризуют залежь в начальном, не затронутом разработкой состоянии. Они позволяют построить модель и определить на ее основе начальные запасы углеводородов, а также решать вопросы разработка на любой стадии независимо от степени изученности месторождений.

Создаваемые статические модели залежей применительно к указанным выше стадиям изученности могут быть предварительными, рабочими и уточненными.

Динамические модели создаются только на разрабатываемых месторождениях, меняющих свое состояние по мере отбора запасов углеводородов. Это модели, позволяющие определить текущие остаточные запасы и принимать решения по совершенствованию системы разработки.

Как отмечалось выше, настоящий Регламент ориентирован на создание геолого - технологических моделей месторождений, находящихся на поисково - разведочном или эксплуатационном этапах изучения. На региональном этапе, целью которого является изучение закономерностей геологического строения осадочных бассейнов и оценка перспектив нефтегазоносности крупных территорий, производится специфическое геологическое моделирование процессов седиментации, тектоногенеза, образования и миграции углеводородов, которое в настоящем Регламенте не рассматривается.

2.2.6.1. Особенности построения предварительной геологической статической модели на стадии поиска и оценки месторождений (залежей)

Эти модели создаются на основе информации, полученной на открытых месторождениях, для планирования и оптимизации геологоразведочных работ, составления проекта пробной эксплуатации или технологической схемы опытно - промышленной разработки и подсчета запасов по категориям С1 и С2, преимущественно категории С2. Основой для создания предварительной модели служат данные сейсмических исследований, керна, ГИС, опробования поисковых, разведочных и опережающих эксплуатационных скважин. На этой стадии большая роль отводится сейсмическим методам исследований, в особенности 3D.

Для геометризации залежей составляются предварительные схемы корреляции разрезов скважин с прослеживанием в их разрезе флюидоупоров, позволяющих разделить многопластовый разрез на продуктивные горизонты и пласты. На основе этих схем, а также указанной выше информации обосновываются:

  • - предполагаемые структурные планы маркирующих поверхностей, наиболее вероятное положение флюидоупоров, положение контуров нефтегазоносности;
  • - общие представления о внутреннем строении продуктивной толщи литологический состав пород, средние фильтрационно - емкостные свойства, степень расчлененности разреза);
  • - начальное пластовое давление;
  • - свойства нефти, газа, воды;
  • - продуктивность скважин.

Предварительная статическая модель включает в себя набор структурных карт, схем корреляции, обоснования флюидных контактов, геологических профилей, карт изопахит продуктивной части горизонтов (пластов).

2.2.6.2. Особенности построения статической рабочей модели на стадии разведки и опытно - промышленной эксплуатации

Эти модели создаются на основе информации, полученной при проведении разведочных работ, пробной эксплуатации и опытно - промышленной разработки на промышленных месторождениях (залежах). На этой основе осуществляется подсчет запасов категорий В, С1 и С2 (частично) с представлением их в ГКЗ МПР РФ и для составления технологической схемы разработки месторождения.

Построение рабочих адресных моделей выполняется с использованием результатов комплексной обработки всей имеющейся информации, полученной сейсмическими методами, ГИС, изучения керна, анализа проб воды, нефти, газа, данных опробования и исследований скважин, опытно - промышленной разработки.

Основой моделирования являются методы геометризации, позволяющие путем детальной корреляции, обоснования контактов, построения различных карт и профилей, отображать особенности и строение объекта и условий залегания углеводородов в недрах с детализацией до уровня пласта.

При построении схем детальной корреляции скважин внутри продуктивных горизонтов прослеживаются отдельные пласты и разделяющие их непроницаемые породы. По продуктивным пластам на основе опробования устанавливаются кондиционные пределы параметров пластов, что позволяет на указанных выше геологических документах проследить распространение коллекторов продуктивных пластов по площади и по разрезу в пределах зон разного насыщения.

В результате размеры и форма многопластовых залежей обосновываются по положению различных границ в пределах каждого пласта:

  • - контуров нефтегазоносности;
  • - линий выклинивания и литофациального замещения пласта;
  • - тектонических нарушений и др.

Кроме геологической структуры, в статической рабочей модели отражаются свойства пластовых флюидов до начала разработки, природный режим, начальное пластовое давление, пластовая температура, количественная оценка неоднородности пластов (характеристики распределения ФЕС, толщин, коэффициентов песчанистости и расчлененности).

2.2.6.3. Особенности построения уточненной статической модели на стадии эксплуатационной разведки в процессе разработки залежей

Эти модели используются для подсчета запасов категорий В и А, и частично С1 после эксплуатационного разбуривания месторождения согласно технологической схеме или проекту разработки, а также для составления уточненных проектов разработки, выполнения анализов разработки.

Уточнение размеров и формы залежей на этой стадии осуществляется за счет прослеживания в процессе детальной корреляции всего фонда эксплуатационных скважин с целью выявления путей фильтрации флюидов по проницаемым пропласткам и зон, слабо вовлеченных в разработку.

В продуктивном разрезе многопластовой залежи (эксплуатационного объекта) на основе гидродинамических исследований, керна и ГИС обосновывается выделение в пределах пластов и пропластков типов коллекторов по продуктивности, их положение в разрезе в пределах зон разного насыщения. Для каждого пласта (пропластка) строятся карты распространения коллекторов разных типов по площади залежи. При совмещении всех этих карт по всем пластам и пропласткам получают уточненную статическую адресную модель внутреннего строения залежи.

Уточнение внутреннего строения залежи на данной стадии осуществляется также в процессе адаптации модели по данным истории разработки. Уточнение начальных свойств пластовых флюидов термобарических условий на этой стадии не производится.

2.3. Подсчет запасов углеводородов

Приводится обоснование принятого метода подсчета запасов углеводородов, выделения подсчетных объектов, обоснование величин подсчетных параметров, принципов оконтуривания залежей и подсчетных блоков. Рассматривается структура распределения запасов по зонам различного насыщения, категориям запасов, коллекторам различных ФЕС.

Анализируются изменения величин запасов по месторождению в целом и по отдельным пластам по отношению к предыдущему подсчету.

В общем случае в ячейках цифровой модели, расположенных гипсометрически выше водонефтяного контакта, рассчитываются значения объемов углеводородов. Затем производится пересчет к стандартным условиям и вычисляются соответствующие величины запасов по нефти, газу, конденсату. При необходимости могут быть рассчитаны запасы углеводородов, расположенные ниже принятого на данном этапе изученности водонефтяного контакта.

Результатом подсчета запасов являются суммарные объемы углеводородов в целом по месторождению, по залежам и подсчетным объектам. Подсчет ведется отдельно по чисто нефтяным, водонефтяным, газонефтяным зонам с разделением по категориям запасов.

При этом рассчитываются площадь нефтеносности, объем нефтеносного коллектора, объем порового пространства нефтеносного коллектора, объем порового пространства коллектора, занятого нефтью, средние нефтенасыщенные толщины, коэффициенты открытой пористости и нефтенасыщенности. Данные заносятся в таблицы рекомендованного вида (№2.11 - 2.14). К разделу отчета прилагаются цифровые карты линейных объемов углеводородов (плотности запасов).

Подсчет запасов проводится также по отдельным элементам: седиментационным циклам, представленным одним или несколькими слоями ячеек в цифровой геологической модели, интервалам, ограниченным сверху и снизу поверхностями структурного каркаса.

Для каждого слоя ячеек, лежащего гипсометрически выше водонефтяного контакта, рассчитываются площадь нефтеносности, объем нефтеносного коллектора, объем порового пространства нефтеносного коллектора и объем порового пространства коллектора, занятого нефтью, а также средние нефтенасыщенные толщины, коэффициенты открытой пористости и нефтенасыщенности.

Расчет ведется отдельно по чисто нефтяным, водонефтяным и газонефтяным зонам с указанием категории запасов. Результаты расчетов сводятся в таблицу. Результаты оценки запасов представляются также в виде карт изолиний равных линейных объемов нефти.

Рекомендуется проводить раздельную оценку запасов для монолитных коллекторов с большой эффективной толщиной и для тонкослоистых коллекторов. Также рекомендуется проводить раздельную оценку запасов в высокопроницаемых, среднепроницаемых и низкопроницаемых коллекторах.

Для интервалов, представленных несколькими слоями ячеек, можно проводить оценку запасов кровельной, средней и подошвенной частей интервала.

Результаты расчетов приводятся в таблице структуры запасов продуктивных пластов, подсчетных объектов или седиментационных циклов.

Приводится анализ и сопоставление результатов подсчета запасов углеводородов по отдельным залежам, категориям и зонам с величинами запасов, числящихся на балансе ВГФ или подсчитанными при построении модели месторождения ранее. Дается анализ причин, приведших к изменениям величин подсчетных параметров и запасов углеводородов.

2.4. Оценка достоверности моделей продуктивных пластов

В разделе излагается методика оценки достоверности запасов углеводородов.

На основе сопоставления данных бурения и сейсморазведки дается оценка возможной величины погрешности в определении площадей нефтеносности.

По результатам оценки тесноты связей «керн - ГИС», погрешностей определения исходных геофизических и петрофизических параметров определяются погрешности величин пористости и нефтенасыщенности. Эти оценки уточняются на основе результатов сравнения величин пористости и нефтенасыщенности, полученных расчетом по пластопересечениям в скважинах, со значениями этих величин, полученных при осреднении карт этих полей в модели.

Дается экспертная оценка величин погрешностей определения эффективных нефтенасыщенных толщин и параметров, характеризующих свойства флюидов - плотность, пересчетный коэффициент. С учетом величин погрешностей отдельных подсчетных параметров определяется величина интегральной оценки начальных балансовых запасов.

Полученные в результате создания геологической цифровой модели двухмерные или трехмерные сетки геологических параметров, величины балансовых запасов передаются далее в пакеты, преобразующие исходные геологические данные для программ гидродинамического моделирования.

Если построение ПДГТМ выполнялось ранее, дается сравнение достоверности полученных результатов с результатами работ прошлых лет. Анализируются причины изменения достоверности построенной модели месторождения.

...Раздел 1. Назад. | Содержание | Раздел 3. Далее...

 
рд/153-39.0-047-00/раздел_2_2.txt · Последние изменения: 2011/01/30 21:55 (внешнее изменение)